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Abstract 

To capture volatility risk, we use factors from VIX, VIX futures, and their basis. We find that 

portfolios with lower (higher) factor loadings on the market and volatility risk from in-sample 

time-series regressions, have persistent out-of-sample lower (higher) factor loadings. More 

importantly, by separating cases based on the sign of volatility changes, this study documents 

the existence of an asymmetric effect due to volatility shocks on asset returns. When 

volatility is shocked positively, there is a significantly negative relationship between factors 

associated with uncertainty and asset returns. Furthermore, after incorporating this 

asymmetric effect, volatility factors have significant risk premia in Fama-MacBeth cross-

sectional regressions. 
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1. Introduction 

The Capital Asset Pricing Model (CAPM) (Sharpe, 1964; and Lintner, 1965) assumes 

a simple linear relationship between an asset’s expected returns and its risk synthesized by a 

covariance measure: the beta. Focusing on the first two moments of assets’ returns, this beta 

is the only pricing factor and it reflects the relationship between an asset’s return and the 

market. However, empirical studies provide evidence that the CAPM cannot adequately 

explain time-series and cross-sectional properties of asset returns.
1
 Whether or not other 

factors affect expected returns remains an open question.
2
  

Furthermore, the CAPM is based on the assumption that future market conditions are 

the same as those from the past. In particular, it assumes that volatility is constant. However, 

historical data are not able to reflect the current and future expectations if economic 

conditions change. Since it is known that option prices incorporate market expectations, the 

introduction of forward-looking information into asset pricing models becomes extremely 

valuable. In fact, information, such as volatility, incorporated in options can reflect market 

expectations on future conditions. Given that several previous papers provide supportive 

evidence that option-implied information outperforms historical in volatility prediction 

(Christensen and Prabhala, 1998; Blair, Poon and Taylor, 2001; Poon and Granger, 2005; 

Taylor, Yadav and Zhang, 2010; and Muzzioli, 2011), very recently we have seen a surge of 

                                                 
1
 Returns that cannot be explained by the CAPM are known as pricing anomalies.  For example, the Monday 

effect (Cho, Linton and Whang, 2007), the P/E effect (Basu, 1977), the size effect (Banz, 1981), the B/M effect 

(Rosenberg, Reid and Lanstein, 1985), the momentum effect (Jegadeesh and Titman, 1993), the negative 

relationship between abnormal capital investments and stock returns (Titman, Wei and Xie, 2004), the 

significant relationship between the idiosyncratic risk and asset returns (Goyal and Santa-Clara, 2003; Ang, 

Hodrick, Xing and Zhang, 2006; Malkiel and Xu, 2006; Bali and Cakici, 2008; Fu, 2009). 

 
2
 For example, Fama and French (1993) document that factors constructed on the basis of size and book-to-

market ratio (SMB and HML, respectively) can help to improve the performance of asset pricing model. SMB 

(Small Minus Big) is the average return on the three small portfolios minus the average return on the three big 

portfolios. HML (High Minus Low) is the average return on the two value portfolios minus the average return 

on the two growth portfolios. Carhart (1997) find that the factor measured the momentum effect can explain 

stock returns. Furthermore, Ang, Hodrick, Xing and Zhang (2006) and Chang, Christoffersen and Jacobs (2013) 

find supportive evidence that the factor formed based on the change in volatility is significant in explaining 

equity returns. 
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interest in the literature which try to incorporate option-implied information in asset pricing 

models. For instance, Ang, Hodrick, Xing and Zhang (2006) and Chang, Christoffersen and 

Jacobs (2013) both document that the aggregate volatility (which is measured by change in 

VXO or VIX index) is important in explaining the cross-section of stock returns.
3
 

Several empirical studies document the existence of a premium for bearing volatility 

risk, supporting the hypothesis that this may be an important additional pricing factor in 

equity markets. For instance, by investigating delta-hedged positions, Bakshi and Kapadia 

(2003) provide evidence which is supportive of a negative market volatility risk premium. 

Arisoy, Salih, and Akdeniz (2007) use zero-beta at-the-money straddle returns on the 

S&P500 index to capture volatility risk. Empirical results in their study show that volatility 

risk helps in explaining the size and book-to-market anomalies. By investigating three 

countries (the US, the UK, and Japan), Mo and Wu (2007) find that investors are willing to 

forgo positive premia in order to avoid increases in volatility. Carr and Wu (2009) use the 

difference between realized and implied variance to quantify the variance risk premium, and 

they find that the average variance risk premium is strongly negative for the S&P 500, the 

S&P 100, and the DJIA. Bollerslev, Tauchen and Zhou (2009) use the difference between 

model-free implied and realized variance to estimate the volatility risk premium and show 

that such a difference helps to explain the variation of quarterly stock market returns.
4
 Using 

the same definition, Bollerslev, Gibson and Zhou (2011) also document that the volatility risk 

premium is relevant in predicting the return on the S&P500 index. Ammann and Buesser 

(2013) follow the same approach in order to investigate the importance of the variance risk 

premium in foreign exchange markets (EUR/USD, GBP/USD, USD/JPY and EUR/GBP). 

                                                 
3
 The VXO index is introduced in 1993 based on trading of S&P 100 (OEX) options. Then, on September 22

nd
, 

2003, the CBOE revises the method for volatility index calculation (i.e. the VIX index). The VIX index is based 

on the S&P 500 (SPX) options. Both the VXO index and the VIX index reflect the expected volatility of 30-day 

period. 

 
4
 Here, model-free implied volatility/variance refers to the volatility/variance calculated by using data (e.g. 

strike prices) on a range of options without depending on an option pricing model. 
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From these empirical studies, we can see that volatility risk could be an important pricing 

factor in equity markets. 

Furthermore, the only pricing factor considered in the CAPM setup (i.e. the beta) is 

assumed to be constant and not dependent by upward or downward movements of the market 

portfolio. In contrast, some studies reveal that the influence of the market’s realization is not 

symmetric. Ang, Chen and Xing (2006), for instance, show a downside risk premium of 

approximately 6% per annum, finding that, over the period from July 1963 to December 2001, 

stocks that covary strongly with the market during market declines have higher average 

returns compared with those exhibiting low covariance with the market.
5
 Given that the 

market risk has an asymmetric effect on equity returns, it is noteworthy to ask whether the 

influence of volatility risk on equity returns is also asymmetric. Delisle, Doran and Peterson 

(2011) use the innovation in VIX index to measure volatility risk and focus on the 

asymmetric effect of the volatility risk. To be more specific, their study documents that 

sensitivity to VIX innovations is negatively related to returns when volatility is increasing, 

but is unrelated when it is decreasing. In the light of this, Farago and Tedongap (2012) claim 

that investors’ disappointment aversion is relevant to asset pricing theory, conjecturing that 

this disappointment aversion results not only from a decrease in the market proxy but also an 

increase in the volatility index. Empirical results in their study show that undesirable changes 

(decrease in market and increase in volatility indices) motivate significant premia in the 

cross-section of stock returns. In order to understand the asymmetric effect due to market and 

volatility risks, it is important to distinguish between different cases: positive or negative 

market returns, and increment or reduction in the volatility index. However, we cannot use 

past data as a proxy for ex ante expectations. Thus, it needs to be clarified that the analysis of 

                                                 
 
5
 The measure of downside risk used in this study is introduced by Bawa and Lindenberg (1977). 
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the asymmetric effect focus on ex post realizations and do not help the investigation of asset 

return predictions. 

Based on the prior literature, this study concentrates on two main research questions. 

First, to capture volatility risk and test whether volatility conveyed by options predicts equity 

returns, this study introduces VIX index (hereafter, VIX) and VIX index futures (hereafter, 

VIX futures) into asset pricing models. Second, by defining a dummy variable which reflects 

whether the volatility realisation is positive or negative, we focus on ex post analysis of two 

different scenarios: upward and downward movements of the market volatility. In addition, 

this study uses Fama-MacBeth cross-sectional regressions to test if the volatility risk 

premium is significant across portfolios. We consider the possibility that the ex post volatility 

realization could be asymmetric by including dummy variables in these cross-sectional 

regressions.  

This study contributes to previous literature in the following areas. First, we introduce 

VIX and VIX futures into asset pricing models. Few studies have used VIX futures in asset 

pricing and those only focus on either the theoretical pricing or the existence of a term 

structure.
6
 Trading on VIX futures can provide investors with an expectation of VIX itself at 

expiration; so the movements in VIX futures (the first difference of VIX future), can reflect 

changes in market expectations of volatility at expiration, while the difference between VIX 

and VIX future (i.e. basis) can reflect deviations of VIX from its expected path. Such shocks 

are unexpected by investors. Thus, introducing these factors into asset pricing models could 

help to improve the models’ ability to represent the real market. 

Secondly, we contribute to using risk-neutral volatility measures in empirical tests on 

volatility risk premia. Historical data reflects a negative relationship between the market and 

volatility indices. An increase in the market index often comes together with a decrease in the 

                                                 
6
 For example, Lin (2007), Zhang and Zhu (2006) focus on the pricing of the VIX index future. Huskaj and 

Nossman (2012) and Lu and Zhu (2009) both investigate the term structure of VIX index future. 
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volatility index, while a downward movement of the market frequently comes together with a 

sharp increase in the volatility index. Additionally, such relationship is time-varying, and it is 

stronger during periods of financial turmoil; as highlighted by Campbell, Forbes, Koedijk and 

Kofman (2008)
 7

, an increased correlation between the market index and market volatility 

during crisis indicates deterioration in the benefits from assets’ diversification. In light of this, 

Jackwerth and Vilkov (2013) prove the existence of a significant risk premium based on 

index-volatility correlation. They also provide an interpretation of the asset-volatility 

correlation premium which may be viewed as compensation for a fear of increasing volatility. 

In other words, Jackwerth and Vilkov (2013) argue that the investors are willing to pay a 

premium for the correlation between the market and the volatility indices. In addition, trading 

of options enables us to find a proxy for risk-neutral volatility. Thus, in addition to the market 

risk premium, volatility or variance risk premia are more commonly-tested in empirical tests 

than correlation risk premium.  

Thirdly, our study takes an asymmetric effect of the volatility risk into consideration. 

In fact, whereas small increments in the market index and consequent reductions in the 

volatility index are consistent with investors’ expectations; decreases in the market or 

increases in the volatility indices are perceived as shocks and negative news for investors. 

Separating these different cases through dummy variables enable us to analyze the role of 

volatility risk in asset pricing in these different scenarios. To this end, conducting an ex post 

analysis, we provide evidence of a significant negative relationship between volatility risk 

and asset returns during periods with positive volatility changes. 

  

                                                 
7
 Campbell, Forbes, Koedijk, and Kofman (2008) also point out that the reduction in diversification benefits is a 

result of the fat tailedness of financial asset return distributions. 
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The rest of this study is organized as follows. Section 2 discusses details of data and 

methodology. Results on time-series regressions and Fama-MacBeth cross-sectional 

regressions are presented in Section 3. Finally, section 4 concludes this study. 

 

2. Data and Methodology 

2.1 Data 

 This study focuses on the effect of volatility risk factors on individual stock returns. 

Daily stock returns are downloaded from CRSP. When forming volatility factors, this study 

uses the VIX and its futures, which are obtained from the CBOE website. Our models also 

include other factors, such as market excess return, SMB and HML.
8
 These factors are 

available in Kenneth French’s data library.
9
 

 VIX futures started trading on the CBOE in March 26
th

, 2004. So the sample period 

for our analysis with the VIX futures included starts from April 1
st
, 2004 and ends on 

December 31
st
, 2012. For the analysis focusing on the VIX, the sample period is extended, i.e. 

from January, 1996 to December, 2012. 

 

2.2 Methodology 

 In order to investigate the relationship between individual stock returns and volatility 

factors constructed in this study, we implement the following procedure. 

 

                                                 
8
 Market excess return is the difference between the value-weight return of all CRSP firms incorporated in the 

US and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11 and the one-month 

Treasury bill rate (from Ibbotson Associates). SMB and HML have been discussed in footnote 2. 

 
9
 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html for more details. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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2.2.1 In-Sample and Out-of-Sample Time-Series Regressions 

 First, at the end of each calendar month, we run in-sample regression models by using 

daily data within that month. The models are as follows: 

               
   (         )                                          ( ) 

               
                                                          ( ) 

               
   (         )    

                                   ( ) 

where      stands for daily returns on each individual asset,      is return of the market, and  

     is the risk-free rate.   , which indicates the proxies used as volatility factors, can be 

defined in four different ways:     (change in VIX futures),      (change in VIX), 

       (the difference between VIX and its futures, i.e. basis), and    (   )     (  ) 

(the difference between log VIX and log VIX futures).
10

 With regards to the VIX futures, we 

use the settlement price of the future contract with shortest time-to-maturity (always contracts 

which expire over the next month) as    in above models.
11

  

After obtaining coefficient estimations in above in-sample regression models, we 

form quintile portfolios at the end of each month based on the beta coefficients.
12

 Then, after 

                                                 
10

 VIX index futures reflect the expectation of VIX index at expiration.     is the daily change in VIX index 

futures. So,     can reflect the daily change in expectation of market index volatility during the 30-day period 

after expiration. If      , the settlement price of VIX index futures increases compared to the previous 

trading day, and vice versa. VIX index measures market index volatility at 30-day horizon.      is the daily 

change in VIX index. Thus,      measures the daily change in the market index volatility on each trading day. 

So, VIX index and it futures reflect 30-day volatility for different periods. If       , the VIX index increases 

compared to the previous trading day, and vice versa.        measures the difference between VIX index 

and its futures on each day. So,        can reflect the deviation of VIX index from the market expectation. 

   (   )     (  ) measures difference between log VIX index and log VIX index future on each day, and it 

is more closed to normal distribution than       . Thus, using    (   )     (  ) rather than        

should improve the performance of the regression model. 

 
11

 From the dataset, we find that, only after October 2005, CBOE has VIX index future contracts expiring in 

each month.  

 
12

 In order to form portfolios, we use three weighting schemes. First, we allocate the equal number of stocks into 

each portfolio and the weights of all stocks are the same. If the number of stocks in one portfolio is  , the 

weight of each stock within the portfolio should be equal to 
 

 
. Second, we still allocate the equal number of 

stocks into each portfolio, and we use value-weighted scheme within each portfolio. Thus, stocks with large 

market capitalization have high weights, while stocks with small market capitalization have low weights. Third, 
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the quintile portfolio formation, we run out-of-sample regressions by using the following 

one-month daily returns on quintile portfolios: 

               
   (         )                                          ( ) 

               
                                                       ( ) 

               
   (         )    

                                    ( ) 

where      stands for daily returns on each quintile portfolio. Based on the results from out-of-

sample regression models, we can get results on whether the significance of coefficients on 

market and volatility risk for the “5-1” arbitrage portfolio persists during out-of-sample 

periods.  

 Among the six time-series regression models listed above, Model (1), (2), (4) and (5) 

are univariate regression models, while Model (3) and (6) are multivariate regression models. 

Based on the results obtained from time series regressions, we compare the persistence of 

coefficients on market excess return and volatility factors. However, if the realization of the 

market excess return or the volatility factors is close to zero, it is difficult to find significant 

non-zero returns on the “5-1” arbitrage portfolio. Thus, if we can distinguish periods with 

positive and negative realizations of either market or volatility indices, it is possible to detect 

statistically significant returns (or even Jensen’s alphas, i.e. risk-adjusted returns) on the 

arbitrage portfolio, by running the regressions for the quintiles' formation in each situation.  

 

2.2.2 Asymmetric In-Sample and Out-of-Sample Time-Series Regression 

 Though previous models help us to learn the relationship between asset returns and 

volatility factors, these models ignore asymmetric effects of the volatility risk. Financial 

markets may react differently to positive or negative volatility shocks. Thus, this study 

incorporates an asymmetric effect of the volatility risk into models. In order to separate 

                                                                                                                                                        
we allocate different number of stocks in different portfolios, but we require that the total market capitalization 

of quintile portfolios should be the same. Then, within each portfolio, we still use value-weighted scheme. 
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different cases, we include dummy variables in our regression models. We set the dummy 

variable equal to 1 if the volatility factor (   ,     ,       , or    (   )     (  )) 

is positive or zero, and equal to 0 if the volatility factor is negative.
13

 Therefore, the model is 

specified as follows: 

               
   

   
     

    (         )    
         

   
   

      ( ) 

After running the regression model shown in equation (7) by using one-month daily data at 

the end of each calendar month, we form quintile portfolios separately in two different 

situations (      and      ). In other words, when the volatility factor is positive or 

zero, we form quintile portfolios based on (  
     

   
), whereas, when the volatility factor 

is negative, we form quintile portfolios based only on   
  . Furthermore, we form “5-1” 

arbitrage portfolios, and calculate Jensen’s alphas with respect to the CAPM or the Fama-

French three-factor model for these arbitrage portfolios to see whether the relationship 

between asset returns and factor loadings to volatility factors is significant even after 

including market excess return, SMB and HML. This analysis enables us to verify whether 

the asymmetric effect of volatility risk on asset returns exists or not. 

 

2.2.3 Fama-MacBeth Cross-Sectional Regression 

 In addition to time-series regressions, we also run Fama-MacBeth (1973) cross-

sectional regressions to check whether investors are willing to pay risk premium or buy 

insurance for the volatility realization. 

 Before starting the cross-sectional regressions, we need to form portfolios to reduce 

idiosyncratic errors. We follow the method documented in Ang, Hodrick, Xing and Zhang 

(2006) for portfolio formation. We assume that the portfolios are rebalanced with monthly 

                                                 
13

 This study focuses on the asymmetric effect of the volatility risk, so we ignore the asymmetric effect of the 

market risk, which is confirmed in Ang, Chen, and Xing (2006). 
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frequency. Thus, at the end of each month, we first form five quintiles based on beta 

coefficients on market excess return (  
   ) from the univariate regression:

14
 

               
    (         )                                      ( ) 

Then, within each market quintile, we form five quintile portfolios based on the beta 

coefficient associated with   ,   
  : 

               
    (         )    

                                ( ) 

So, for Fama-MacBeth cross sectional regressions, there are     portfolios in total.  

After forming 25 portfolios, we run the following regression by using daily data of 

each portfolio in the same one-month (the month for portfolio formation) to get factor 

loadings: 

               
    (         )    

                            (  ) 

For each portfolio, we can get the intercept (  ), the beta coefficient on market excess returns 

(  
   ), and the beta coefficient on volatility factor (  

  ). That is, we have 25   
    and 25 

  
  .  

 

Then, we use these factor loadings in the second step of Fama-MacBeth cross-sectional 

regression. On each trading day within the following one-month period, we run the following 

regression by using data for 25 portfolios: 

              
         

                                        (  ) 

where    is the daily return on each portfolio. We use the same   
    and   

   in the 

following one-month to estimate      and    . Since there are about 20 trading days within 

each month, after the cross-sectional regression, we can get about 20      and 20     in each 

                                                 
14

 We use daily data within one month for regression models shown in equation (8) and (9). 
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calendar month. Finally, we use the t-test to check whether the risk premium on each 

volatility factor is significantly different from zero. 

 As we already mentioned earlier, this study also investigate whether the market and 

volatility risk premia are asymmetric. In order to consider different situations, we define four 

dummy variables (  
   ,   

   ,   
  , and   

  ).
15

  

          
     

     
      

    
    

                          (  ) 

The model above helps to separate different scenarios: upward or downward movements of 

the market portfolio, and positive or negative shocks of the volatility factor. So the model 

enables us to analyze whether the market and volatility risk premia differ by the direction of 

market. This model augments the cross-sectional regression to allow for the fact that the 

realized market and realized volatility risk premia can be negative over specific periods.  

 

2.2.4 Discussion about the Methodology 

As mentioned above, without including dummy variables in regression models, it is 

arduous to detect a significant difference between returns on extreme portfolios. Given that 

the data used in our analysis are downloaded with daily frequency, the average market or 

volatility realizations are expected to be close to zero (this is later confirmed in Panel A of 

Table 1). If the average market or volatility realization is close to zero, no matter how factor 

loadings change across different quintiles, returns on different quintiles are all similar. In 

contrast, by separating different market or volatility realizations, it is possible to find 

significant results. In other words, the inclusion of dummy variables to isolate different 

market or volatility realizations enables us to investigate the asymmetric effect of volatility 

shocks. However, the shortcoming of this methodology is due to the fact that we cannot 

                                                 
15

 We follow the method documented in Pettengill, Sundaram and Mathur (1995) and Hung, Shackleton and Xu 

(2004) to define dummy variables. We define that   
    is equal to 1 if the market excess return is positive or 

zero, otherwise 0;   
    is equal to 1 if the market excess return is negative, otherwise 0;   

   is equal to 1 if 

volatility risk factor (   ,     ,       , or    (   )     (  )) is positive or zero, otherwise 0;   
   is 

equal to 1 if volatility risk factor (   ,     ,       , or    (   )     (  )) is negative, otherwise 0. 



12 

 

predict future movements of both market and volatility indices. So, this kind of model can 

perform well in ex-post analysis, but it cannot help in predicting ex-ante asset return.  

 The results about in-sample and out-of-sample time-series regressions, and Fama-

MacBeth cross-sectional regressions are presented and discussed in the next section. 

 

3. Results 

 Before presenting the results for time-series and cross-sectional regressions, we first 

show some descriptive statistics. 

 

3.1 Descriptive Statistics 

 First, we plot daily data of the VIX future, the VIX, and the S&P500 index during the 

period from April 1
st
, 2004 to December 31

st
, 2012 in Figure 1.  

[Insert Figure 1 here] 

It is clear that when the S&P500 index increases, VIX and VIX future decrease, and 

vice versa. This phenomenon is even stronger during the financial crisis. For instance, from 

the beginning of September 2008 to the end of October 2008, the S&P500 index decreases 

dramatically (from about 1280 to 970), while VIX future (VIX) increases from 22% (22%) to 

60% (80%).  

[Insert Table 1 here] 

Looking at the pairwise correlations in Panel B of Table 1, we find that the correlation 

between VIX futures and S&P500 index is -0.6257 and the correlation between VIX and 

S&P500 indices is -0.6036. Thus, we can confirm that VIX and its futures are both highly 

negatively correlated with S&P500 index. When the market index increases, the volatility 

index often decreases, so investors care less about volatility risk. In contrast, when the market 

index falls, the volatility index frequently increases because investors care more about 
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downward returns related to the volatility risk. Thus, investigating the volatility risk premium 

is an important issue for investors. 

 Before starting the time-series and cross-sectional analysis, in order to make sure that 

our models are not mis-specified, we test whether variables used in our analysis are stationary 

or not. From the results for the augmented Dickey-Fuller unit root test (with the null 

hypothesis that the tested process has a unit root) presented in Panel C of Table 1, we find 

that the VIX future or the VIX are not stationary at 1% significance level (with p-values of 

0.0717 and 0.0373, respectively). However, the first difference of VIX future or VIX is 

stationary (with a p-value smaller than     ).
 16

 Thus, both VIX future and VIX are 

integrated. So, in later analysis, we use the first difference of VIX future or VIX rather than 

the level as the volatility factor. We also test whether the difference between VIX and VIX 

futures and the difference between log VIX and log VIX future are stationary or not. The 

results in last two rows in Panel C of Table 1 indicate that both differences have no unit root. 

So, all four factors (   ,     ,       , or    (   )     (  )) used in our study are 

stationary.  

 In next sub-section, we present the results for in-sample and out-of-sample time series 

regressions. 

 

3.2 Results for Time-Series Regressions 

 Table 2 to 6 present results for portfolio level analysis about in-sample and out-of-

sample time series regressions. We form quintile portfolios based on the coefficients obtained 

from in-sample regressions. Quintile portfolio 1 consists of stocks with the lowest 

corresponding coefficient, and quintile portfolio 5 consists of stocks with the highest 

                                                 
16

 For ADF unit root test, in order to find the proper lag length, we use Schwarz info criterion with allowing for 

maximum lags of 24. For ADF unit root test, if Augmented Dickey-Fuller test statistic is smaller than critical 

values, it means that there is no unit root. If there is a unit root in a process, we will test whether the first 

difference is stationary or not. If the first difference of a variable is stationary, it means that the process is I(1) 

process. 
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corresponding coefficient. In addition, we form the “5-1” zero-investment portfolio by 

holding portfolio 5 and shorting portfolio 1. 

 

3.2.1 Results for Univariate Regressions 

 First, we investigate the effect of each factor separately through univariate regressions. 

Table 2 reports the corresponding results.
17

  

[Insert Table 2 here] 

Looking at Panel A of Table 2, we cannot find any significantly non-zero monthly 

returns for the “5-1” arbitrage portfolio if we form quintile portfolios based on   
    . 

However, the out-of-sample regression’s results show a persistent effect of market beta on 

asset returns. That is, the market beta (  
   ) increases from quintile portfolio 1 to quintile 

portfolio 5 in out-of-sample period. The market beta on the arbitrage portfolio is statistically 

significant even at 1% significance level (1.1038 with a p-value smaller than     ). This 

confirms the persistence of the market beta on asset returns. 

 Panel B to Panel E of Table 2 show results for in-sample and out-of-sample regression 

analysis by using volatility factors (   ,     ,       , or    (   )     (  )). If we 

form quintile portfolios based on loadings of volatility factors, all these four panels reveal 

that  ̅ 
   ,  ̅ 

    ,  ̅ 
  , and  ̅ 

     
 all increase from quintile portfolio 1 to quintile portfolio 5 

in out-of-sample period. The beta coefficients on volatility factors for arbitrage portfolios are 

all statistically significant at a 1% significance level. Thus, these panels show that the effects 

of volatility factors on asset returns are persistent during an out-of-sample period. 

 So, from in-sample and out-of-sample univariate regressions, we find that the effect of 

market beta or betas associated with volatility factors on asset returns persists. In other words, 

portfolios with low (high) market beta or betas on volatility factors during in-sample 

                                                 
17

 Here, we only present the results for value-weighted portfolios because of the space limitation. Resutls for 

portfolios constructed by using other weighting scheme is available upon request. 
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regressions also have low (high) market beta or betas on volatility factor in out-of-sample 

regressions. 

 

3.2.2 Results for Multivariate Regressions 

 In this section, we compare whether the persistence of the effect of market beta is 

stronger than the persistence of effect of volatility factors. Rather than using univariate 

regression models, we test our hypothesis through the use of multivariate regression models 

by including market excess return and each of the volatility proxies (   ,     ,       , 

or             ), one at a time, as explanatory variables. The corresponding results are 

shown in Table 3 to 6. 

[Insert Table 3 to Table 6 here] 

In these four tables, quintile portfolios from column 2 to column 8 are formed based 

on beta coefficients on market excess return, and quintile portfolios in column 9 to column 15 

are formed based on beta coefficients on each volatility factor (   ,     ,       , or 

   (   )     (  ), respectively). 

On the left panels of these four tables (column 2 to 8), we find that, with in-sample 

regressions, portfolios with low market betas also have low betas on volatility factors. In out-

of-sample regressions, no matter which weighting scheme is used for portfolio formation, 

beta coefficients on market excess return increase monotonically from quintile portfolios with 

low average market beta (portfolio 1) to quintile portfolios with high average market beta 

(portfolio 5). Meanwhile,  ̅ 
    on the arbitrage portfolios is significant in each panel of all 

four tables. However, beta coefficients on volatility factors ( ̅ 
   ,  ̅ 

    ,  ̅ 
  , and  ̅ 

     
) 

regarding to the arbitrage portfolios are not always statistically significant during out-of-

sample regressions. In table 3, none of three panels has significant  ̅ 
    on the arbitrage 
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portfolio. The insignificant  ̅ 
   on the arbitrage portfolio can also be found in Panel C of 

Table 4, Table 5, and Table 6. 

On the right panels of these same four tables, we show the findings regarding the 

effects of the volatility risk on asset returns. In all four tables, with in-sample regressions, 

portfolios exhibiting low betas on volatility factors also have low market betas. Analyzing 

these four tables we extract stylized facts. First, there is no monotonic pattern in beta 

coefficients on market excess returns or volatility factors in all three panels of Table 3. Then, 

in Table 4, in Panel A, we find that the arbitrage portfolio has statistically significant  ̅ 
    

and  ̅ 
     even though there is no monotonic pattern. Meanwhile, in Panel B,  ̅ 

    on the 

“5-1” arbitrage portfolio is marginally significant under 10% significance level; this can show 

the weak persistence of market and volatility betas. In Table 5, we find some interesting 

results:  ̅ 
    and  ̅ 

   of the arbitrage portfolio are statistically significant in Panel A, B and 

C of Table 5 even though we can only find a monotonic pattern in  ̅ 
   in Panel C. Similar 

results are found in Table 6 where all  ̅ 
    and  ̅ 

     
 on the arbitrage portfolios are 

statistically significant. 

The results obtained by using      in Table 4 are comparable to the results 

documented in previous studies. In the right part of Panel B in Table 4, beta coefficients on 

     from in-sample regressions increase monotonically from -1.0013 for quintile portfolio 

1 to 1.0990 for quintile portfolio 5. From out-of-sample regressions, we can find that beta 

coefficients on      increase from quintile 1 (-0.0093) to quintile 5 (0.0186) with exception 

of quintile 3. Similar patterns can be found in Ang, Hodrick, Xing and Zhang (2006); from 

Table 1 in Ang, Hodrick, Xing and Zhang (2006), beta coefficients on      from in-sample 

regressions increase from -2.09 for quintile portfolio 1 to 2.18 for quintile portfolio 5. For 

out-of-sample regressions, beta coefficients on      still increase from quintile portfolio 1 

to quintile portfolio 5. However, the range is narrower, only from -0.033 to 0.018. 
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Comparable results are also documented in Chang, Christoffersen and Jacobs (2013); Panel A 

of Table 1 in their paper show that, with in-sample time-series regressions, beta coefficients 

on change in volatility increase monotonically from -1.30 for quintile portfolio 1 to 1.40 for 

quintile portfolio 5. 

From in-sample and out-of-sample univariate regressions, we find that the persistence 

of the effect of market beta on asset returns is stronger than that of the effect of betas on 

volatility factors on asset returns. However, the inclusion of volatility factors in the 

regression model slightly improves the performance of the model (R-square).
18

 So it is useful 

to include volatility factors in addition to market excess return in the regression model. Then, 

in multivariate time-series regressions, we can find that both market and volatility risks have 

persistent beta coefficients. Furthermore, the persistence effect of the beta on market risk 

seems to be stronger compared to the beta on the volatility risk. However, our analysis shows 

the importance of the volatility risk in asset pricing.  

In the next sub-section, we focus on the asymmetric effect of volatility risk. 

 

3.3 Results for Asymmetric Time-Series Regressions 

3.3.1 Results for Four Factors during the Period from Apr 2004 to Dec 2012 

As we mentioned in section 2.2.2, the models used in section 3.1 and 3.2 assume that 

the effects of market risk and volatility risk are symmetric. However, empirical studies 

highlight the existence about asymmetric effect of the market risk (Ang, Chen and Xing, 

2006) and the volatility risk (Farago and Tedongap, 2012). In the light of this, models 

                                                 
18

 For in-sample regressions, among all univariate regression models, the model including the market excess 

return has the highest R-square (0.2292). This means that the traditional CAPM can explain 22.92% variation of 

the equity returns. In addition, if we include the volatility risk factor (   , and     ) in the time-series 

regression model, the R-square can be improved a little (0.2305 and 0.2313, respectively). Furthermore, for out-

of-sample regressions, all multi-variate regression models outperform the univariate regression models in 

explaining variation of portfolio returns. The R-square for univariate regression model including market excess 

return is 0.7808, while the R-square for multivariate regression model including both market excess return and 

change in VIX future is 0.8799. 
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incorporating an asymmetric effect may therefore be more precise. In order to investigate the 

asymmetric effect, we define a dummy variable which is equal to 1 if the volatility factor 

(   ,     ,       , or    (   )     (  )) is larger than or equal to zero, and equal 

to 0 if the volatility factor is smaller than zero. Then, we include this dummy variable into the 

regression (as shown in eq. (7)) and form quintile portfolios in two different situations 

(      and      ). The results on Jensen’s alpha with respect to the CAPM and the 

Fama-French three-factor model are provided in Table 7 to 10. 

[Insert Table 7 here] 

 Table 7 presents results for portfolio analysis about Jensen’s alpha when we form 

quintile portfolios in two different situations separated on the basis of    . When     is 

negative, we do not find any significant Jensen’s alpha on the “5-1” arbitrage portfolio no 

matter which weighting scheme is used for quintile portfolio formation. Conversely, the 

results are different for portfolios formed when     is positive. In this case, we find 

significantly negative Jensen’s alpha with respect to the CAPM (significant at 5% 

significance level) in Panel B and Panel C of Table 7 (-0.0273% per day with p-value of 

0.0435 and -0.0246% per day with p-value of 0.0318). Thus, the results show weak evidence 

that, when there is a positive change in VIX future, portfolios with low exposure to the 

volatility risk (measured by    ) outperform those with high exposure to the volatility risk. 

[Insert Table 8 here] 

 Differently, we obtain the results in Table 8 replacing     with      as proxy for 

the volatility risk. The five columns on the left present results obtained during the period 

when there is a negative change in the VIX. There is no evidence that we are able to obtain 

statistically significant returns on the “5-1” arbitrage portfolio when the VIX decreases. 

Conversely, if quintile portfolios are formed when the VIX increases, we find statistically 

significant and negative alphas with respect to the Fama-French three-factor model on the 
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arbitrage portfolio (-0.0162% per day with p-value of 0.0523 in Panel A, -0.0365% with p-

value of 0.0125 in Panel B, and -0.0291% per day with p-value of 0.0161 in Panel C).
19

 This 

means that investors can generate significant positive excess returns by selling the portfolio 

with high exposure to the volatility risk (portfolio 5) and holding the portfolio with low 

exposure to the volatility risk (portfolio 1).  

[Insert Table 9 & Table 10 here] 

 Table 9 and Table 10 use        and    (   )     (  )  to measure the 

volatility risk, respectively. The results show that only when we form quintile portfolios 

during periods in which the VIX is higher than its future (i.e. positive basis), we find 

marginally significant negative alpha with respect to Fama-French three-factor model (around 

-0.023% per day in Panel B of Table 9 and 10. Thus, investors expect that portfolios with 

lower exposure to the volatility risk earn higher returns when VIX remains higher than its 

expectation. 

 From the analysis of the asymmetric effect of the volatility risk, investors treat 

negative and positive volatility realizations differently. When the volatility factor is negative, 

none of the four volatility proxies (   ,     ,       , and    (   )     (  ) ) 

presents significant relationship with the quintile portfolio returns. However, when the 

volatility factor is positive, all four volatility factors are significantly negatively related to 

quintile portfolio returns even after controlling for market excess returns, SMB and HML. 

That is, when we register positive volatility shocks, all four volatility factors generate 

significant and negative risk-adjusted returns on arbitrage portfolios. 

In addition, the use of       as indicator for volatility shocks allows to better 

(compared to    ,       , or    (   )     (  ) ) highlight the importance of 

                                                 
19

 Even though we can find significant alpha on the arbitrage portfolio after controlling for size and book-to-

market ratio (Fama-French three-factor model), we cannot find significant alpha on the arbitrage portfolio with 

respect to the CAPM. This can be due to the high variation of the alpha with respect to the CAPM. 
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considering the asymmetric effect of volatility on equity returns. Accordingly, in the next 

sub-section, we only focus on the asymmetric effect generated by the      and test the 

robustness of our results by extending the sample period.  

 

3.3.2 Results for      during the Period from Jan 1996 to Dec 2012 

 In this sub-section, only      is used as a proxy for the volatility risk, and the sample 

period is extended to the period from January, 1996 to December, 2012. Furthermore, the 

period for portfolio formation is extended from one month to two or three months. The results 

are documented in Table 11 to Table 13. 

[Insert Table 11 here] 

 Quintile portfolios in Table 11 are formed by coefficients obtained from time-series 

regressions using one-month daily data. The results show that, when the VIX decreases, we 

cannot find any significant relationship between the volatility risk and quintile portfolio 

returns. However, when the VIX increases, we can find significant results. In Panel A, we 

observe a significantly negative Jensen’s alpha with respect to both the CAPM and the Fama-

French three-factor model (-0.0172% per day with p-value of 0.0153 and -0.0150% per day 

with p-value of 0.0344, respectively). Then, in Panel B and C, we can find a significantly 

negative Jensen’s alpha with respect to the Fama-French three-factor model (-0.0253% per 

day with p-value of 0.0251, and -0.0241% per day with p-value of 0.0115, respectively). 

Thus, results in Table 11 are still consistent with the results obtained in previous sub-section 

even extending the sample period. 

[Insert Table 12 here] 

 Subsequently, we try to use more data in time series regressions for portfolio 

formation. Table 12 show results obtained when we use two months’ daily data for portfolio 

formation. From these results, we can only find two significant alphas on the “5-1” arbitrage 
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portfolio: both cases are found when the VIX increases. The first one is the significantly 

negative alpha with respect to the CAPM in Panel A (-0.0126% per day with p-value of 

0.0770), and the second one is the significantly negative alpha with respect to the Fama-

French three-factor model in Panel C (-0.0196% per day with p-value of 0.0299). 

[Insert Table 13 here] 

 In case we use three months’ daily data in time series regressions for portfolio 

formation, we get the results documented in Table 13. The only significant coefficient on the 

arbitrage portfolio is the CAPM Jensen’s alpha in Panel A (-0.0125% per day with respect to 

0.0678). 

 Thus, from the results in this sub-section, we find that, if we use one month’s daily 

data in time-series regression for portfolio formation, quintile portfolio returns are negatively 

correlated with      only when the VIX increases. If we extend the in-sample period to two 

or three months, the results are weaker. However, we can still find evidence on the 

asymmetric effect of the volatility risk on asset returns. 

 In brief, results of asymmetric time-series regressions mainly show that, among all 

four volatility factors (   ,     ,       , or    (   )     (  )),      is the most 

powerful to highlight the importance of the asymmetric effect due to the volatility risk. 

Volatility risk only matters when its change is positive (i.e. the VIX future increases, the VIX 

increases, or the VIX is higher than its expectation). The results about      are robust even 

if we extend the sample period to January 1996 or we increase the period for portfolio 

formation to two months or three months.  

From Figure 1 and Panel B of Table 1, we find a negative correlation between 

volatility index (the VIX) and market index (S&P 500 Index). Thus, decreases in the market 

index often come together with increases in the volatility index. From Ang, Chen, and Xing 

(2006) and Farago and Tedongap (2012) document the asymmetric effect of the market risk 
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and the volatility risk, respectively. Stocks that have a strong relationship with the market 

index during crashes have higher average returns. In addition, investors are willing to buy 

insurance for an undesirable increase in volatility index. Thus, results about the asymmetric 

effect of volatility factors in this section are somewhat consistent with findings in previous 

studies. This research confirms a significant negative relationship between the volatility risk 

and asset returns during the period with increasing volatility index. Investors expect that the 

market index will increase. Meanwhile, the volatility index will decrease correspondingly 

unless it is below its mean. So, increases in market index and decreases in volatility index are 

consistent with investors’ expectations. However, a decrease in market index and an increase 

in volatility index are not expected by investors. Investors treat them as shocks. Thus, it is 

reasonable that volatility factors used in this study are negatively related to asset returns only 

during the period with positive volatility factors. 

 

3.4 Results for Fama-MacBeth Cross-Sectional Regressions 

Even though results from time-series regressions reflect the negative relationship 

between quintile portfolio returns and volatility factors, we still need to use Fama-MacBeth 

cross-sectional regressions in order to confirm whether investors are willing to pay significant 

risk premia to protect their investment for volatility risk, i.e. accept a lower return. 

Before the cross-sectional regressions, to reduce idiosyncratic errors, we need to form 

portfolios. At the end of each month, we run the regression models presented in equation (8) 

and (9). We divide individual stocks into five quintiles based on   
    obtained from 

equation (8). Then, within each market quintile, we form quintile portfolios on   
   obtained 

from equation (9). So, for our cross-sectional regressions, we have        portfolios in 

total. 
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First, we run Fama-MacBeth cross-sectional regressions by using 25 portfolio returns 

without distinguishing whether market excess returns are positive or negative, and volatility 

factors are positive or negative. The corresponding results are documented in Table 14. 

[Insert Table 14 here] 

In all eight columns, we cannot find any supportive evidence that investors are willing 

to pay premia or buy insurance for either market risk or volatility risk. This could be due to 

the fact that the risk premium on each pricing factor (i.e. gamma) is calculated at daily 

frequency. The variation of the risk premium on each pricing factor should be quite high. 

Thus, the high variation in the risk premium leads to insignificant risk premium on different 

pricing factors. 

In addition, we investigate whether the market risk premium or volatility risk 

premium are asymmetric by using the cross-sectional regression model presented in equation 

(12) after defining four dummy variables (  
   ,   

   ,   
  , and   

  ). The results on the 

asymmetric cross-sectional regression are presented in Table 15.  

[Insert Table 15 here] 

In all eight columns in this table, we find that the market risk premium in both bear 

markets and bull markets are quite persistent no matter which volatility factor is used in the 

regression models or which weighting scheme is used for portfolio formation. In bull markets, 

the market risk premium is between 0.43% and 0.46% per day, and is significant at the 1% 

significance level. In bear markets, the market risk premium is around -0.53% per day and 

also significant at the 1% significance level. If we look at the volatility risk premium, we can 

find significant risk premium on almost all four risk premium at 1% significance level except 

for   
       obtained by using value-weighted scheme. To be more specific, the risk premium 

on     when     is positive is 0.3025% per day if we use equal-weighted scheme and 

0.3206% per day if we use value-weighted scheme. The risk premium on     when     is 



24 

 

negative is around -0.26% per day. If      is used as the volatility factor,   
     is higher 

than 0.49% per day while   
     is -0.4295% if we form equal-weighted portfolios and -

0.4650% if we form value-weighted portfolios. Then, if we use the difference between the 

VIX and the VIX future as the volatility factor, the risk premium on        is significant 

when        is negative (around -0.30% if VIX is lower than VIX future). If we use 

             rather than        as the volatility factor,   
            

 is higher than 

0.32% per day and   
             is lower than -0.12% per day.  

Concluding, when we incorporate the asymmetric effect into our analysis, the risk 

premium on market excess return and volatility factors are significant. 

 

4. Conclusions 

Coefficients obtained from in-sample and out-of-sample time-series regressions show 

that portfolios with lower (higher) coefficients on market or volatility risk during in-sample 

period also have lower (higher) coefficients in out-of-sample period. Furthermore, the 

persistence of a market beta effect on asset returns is stronger than that of betas on volatility 

factors. Moreover, including a volatility factor in the regression model improves the 

performance of the model even though we cannot detect significant univariate relationship 

between volatility and portfolio returns. 

 However, using distinguished negative or positive volatility through a dummy 

variable, we find that investors treat negative and positive volatility realizations differently. 

When this volatility realization is negative, there is no significant difference among quintile 

portfolio returns. Conversely, when the volatility realization is positive, all volatility factors 

are significantly negative related to quintile portfolio returns (even after controlling for 

market excess returns, SMB and HML). So, our study provides supportive evidence that the 
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effect of the volatility risk on asset returns is asymmetric and influential at times of market 

stress. 

To conclude, if we incorporate this asymmetric effect into our analysis, the results for 

Fama-MacBeth cross-sectional regressions reveal that the risk premia on market return and 

volatility realization are significant.   
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Appendix 

Figure 1: VIX Index Future (  ), VIX Index (   ), and S&P500 Index (April 1
st
, 2004 to December 31

st
, 2012) 
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Table 1: Descriptive Statistics 

In our analysis, we calculate daily changes for VIX index future (  ) and VIX index (   ). 

Panel A: Summary Statistics 

                           (   )     (  )    

Mean 21.3154 20.9471 -0.0009 0.0006 -0.3683 -0.0294 0.0002 

Std 9.4873 10.3202 1.3773 1.9386 1.9607 0.0701 0.0135 

Min 9.9540 9.8900 -13.0200 -17.3600 -4.9700 -0.2788 -0.0896 

Max 67.9500 80.8600 10.2400 16.5400 23.3100 0.3571 0.1135 
 

Panel B: Correlation Table 

 
                          (   )     (  )                           

   1   
 

  
    

    0.9839 1  
 

  
    

    0.0728 0.0964 1 
 

  
    

     0.0430 0.0938 0.8088 1   
    

       0.3401 0.5027 0.1554 0.2858 1  
    

   (   )     (  ) 0.2894 0.4325 0.1049 0.2432 0.8763 1 
    

       -0.6257 -0.6036 -0.0110 -0.0131 -0.1495 -0.1149 1 
   

        -0.0900 -0.1309 -0.7262 -0.8306 -0.2539 -0.2404 0.0461 1 
  

        -0.0805 -0.1197 -0.7371 -0.8397 -0.2408 -0.2164 0.0385 0.9809 1 
 

   -0.0782 -0.1189 -0.7348 -0.8385 -0.2475 -0.2232 0.0350 0.9797 0.9972 1 
 

Panel C: Unit Root Tests 

 
Augmented Dickey-Fuller test statistic p-value 

   -2.7140  0.0717 

    -2.9769  0.0373 

    -39.5390  0.0000 

     -28.9845  0.0000 

       -9.2935  0.0000 

   (   )     (  ) -11.1879  0.0000 



31 

 

Table 2: Quintile Portfolios Formed on the Coefficient from Uni-Variate Regressions 

from April 2004 to December 2012 
First, we run regression model (1) and (2) for each individual stock by using the previous one-month daily data. 

Then, we form value-weighted quintile portfolios based on beta coefficient. Portfolio 1 consists of stocks with 

the lowest beta coefficient, while portfolio 5 consists of stocks with the highest beta coefficient. After portfolio 

formation, we conduct out-of-sample time-series regression (model (4) and (5)) for next one-month quintile 

portfolio daily returns by using the following regression model. The “return” column reports compounded 

returns of quintile portfolios during the post one-month period. 

 
In-Sample Out-of-Sample 

Panel A: Portfolios formed by  ̅ 
    

 
 ̅   ̅ 

    return  ̅   ̅ 
    

1 0.0008 -0.1485 0.0049 0.0001 0.4636 

2 0.0004 0.4491 0.0060 0.0001 0.6762 

3 0.0003 0.8607 0.0065 0.0001 0.9083 

4 0.0002 1.2818 0.0078 0.0000 1.1746 

5 0.0002 2.0378 0.0076 0.0000 1.5674 

5-1 
  

0.0027 -0.0002 1.1038*** 

pval 
  

(0.6760) (0.3317) (0.0000) 

Panel B: Portfolios formed by  ̅ 
    

 
 ̅   ̅ 

    return  ̅   ̅ 
    

1 0.0008 -1.9034 0.0071 0.0003 -1.1785 

2 0.0005 -1.1113 0.0077 0.0003 -0.9099 

3 0.0005 -0.6948 0.0064 0.0003 -0.7525 

4 0.0005 -0.3036 0.0057 0.0003 -0.6076 

5 0.0009 0.3237 0.0055 0.0003 -0.5271 

5-1 
  

-0.0016 0.0000 0.6515*** 

pval 
  

(0.7928) (0.9186) (0.0000) 

Panel C: Portfolios formed by  ̅ 
     

 
 ̅   ̅ 

     return  ̅   ̅ 
     

1 0.0006 -1.4604 0.0081 0.0003 -1.0145 

2 0.0004 -0.8773 0.0068 0.0002 -0.7678 

3 0.0004 -0.5636 0.0063 0.0002 -0.6035 

4 0.0004 -0.2621 0.0054 0.0002 -0.4716 

5 0.0009 0.2052 0.0055 0.0003 -0.3632 

5-1 
  

-0.0027 0.0000 0.6513*** 

pval 
  

(0.6638) (0.9922) (0.0000) 

Panel D: Portfolios formed by  ̅ 
   

 
 ̅   ̅ 

   return  ̅   ̅ 
   

1 -0.0036 -1.1913 0.0085 -0.0001 -0.4797 

2 -0.0011 -0.5910 0.0072 -0.0001 -0.3794 

3 0.0002 -0.3040 0.0069 -0.0001 -0.3322 

4 0.0014 -0.0402 0.0053 -0.0001 -0.3021 

5 0.0043 0.4318 0.0058 -0.0001 -0.3140 

5-1 
  

-0.0027 0.0000 0.1657*** 

pval 
  

(0.5268) (0.9557) (0.0000) 

Panel E: Portfolios formed by  ̅ 
     

 

 
 ̅   ̅ 

     
 return  ̅   ̅ 

     
 

1 -0.0038 -0.2520 0.0082 -0.0003 -0.1106 

2 -0.0012 -0.1286 0.0067 -0.0003 -0.0869 

3 0.0001 -0.0697 0.0065 -0.0002 -0.0761 

4 0.0013 -0.0155 0.0060 -0.0001 -0.0675 

5 0.0041 0.0808 0.0058 -0.0002 -0.0690 

5-1 
  

-0.0025 0.0001 0.0416*** 

pval 
  

(0.5457) (0.6417) (0.0000) 
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Table 3: Results for Time-Series Regressions with     Included from April 2004 to December 2012 
First, we run the following regression for each individual stock by using the previous one-month daily data: 

               
   (         )    

        

where      represents daily change in VIX future. Then, we form quintile portfolios based on   
    (Column 2 to 8) or   

    (Column 9 to 15). Portfolio 1 consists of stocks 

with the lowest   
    or   

   , while portfolio 5 consists of stocks with the highest   
    or   

   . After portfolio formation, we conduct out-of-sample time-series regression 

for next one-month quintile portfolio daily returns by using the following regression model: 

               
   (         )    

        

The “return” column reports compounded returns of quintile portfolios during the post one-month period. 

 

Portfolios Sorted on   
    Portfolios Sorted on   

    

 
In-Sample Out-of-Sample In-Sample Out-of-Sample 

 
 ̅   ̅ 

     ̅ 
    return  ̅   ̅ 

     ̅ 
     ̅   ̅ 

     ̅ 
    return  ̅   ̅ 

     ̅ 
    

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

1 0.0008 -0.8227 -1.0516 0.0104 0.0004 0.3350 -0.0522 0.0006 -0.0193 -1.7553 0.0129 0.0003 0.9179 -0.0441 

2 0.0001 0.3153 -0.2375 0.0092 0.0002 0.5719 -0.0162 0.0000 0.6178 -0.4262 0.0096 0.0002 0.8396 -0.0291 

3 0.0000 0.8250 -0.0592 0.0097 0.0002 0.8800 -0.0190 0.0000 0.7292 -0.0239 0.0086 0.0002 0.7360 -0.0188 

4 -0.0001 1.3453 0.1736 0.0104 0.0001 1.1041 -0.0283 0.0000 1.0436 0.3673 0.0086 0.0001 0.8346 -0.0158 

5 0.0001 2.6090 1.0105 0.0111 0.0001 1.3579 -0.0430 0.0004 1.9007 1.6740 0.0121 0.0002 0.9209 -0.0508 

5-1 
   

0.0007 -0.0003*** 1.0229*** 0.0092    -0.0008 -0.0001 0.0030 -0.0067 

pval 
   

(0.9016) (0.0092) (0.0000) (0.6769)    (0.6986) (0.4094) (0.8776) (0.6988) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

1 0.0009 -0.3846 -0.9139 0.0065 0.0001 0.6325 -0.0152 0.0007 0.4779 -1.2758 0.0081 0.0002 1.1780 0.0140 

2 0.0004 0.3539 -0.3474 0.0082 0.0002 0.7165 -0.0070 0.0003 0.7429 -0.4165 0.0077 0.0001 0.9628 -0.0229 

3 0.0003 0.8250 -0.0887 0.0073 0.0001 0.9162 -0.0055 0.0002 0.8981 -0.0227 0.0067 0.0001 0.9029 -0.0195 

4 0.0002 1.3307 0.1564 0.0070 0.0001 1.1402 -0.0115 0.0002 1.1661 0.3599 0.0064 0.0001 0.9605 0.0006 

5 0.0003 2.2607 0.6654 0.0066 -0.0001 1.4559 -0.0347 0.0005 1.7975 1.1825 0.0050 0.0000 1.1258 -0.0044 

5-1 
   

0.0001 -0.0002 0.8234*** -0.0195    -0.0031 -0.0002 -0.0522 -0.0184 

pval 
   

(0.9849) (0.2036) (0.0000) (0.5727)    (0.3495) (0.2789) (0.1157) (0.5217) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

1 0.0006 0.0661 -0.5533 0.0063 0.0001 0.6792 -0.0011 0.0005 0.5700 -0.9932 0.0086 0.0002 1.1124 0.0032 

2 0.0003 0.6137 -0.1781 0.0072 0.0001 0.8135 -0.0062 0.0003 0.7769 -0.3021 0.0071 0.0001 0.9341 -0.0204 

3 0.0002 0.9225 -0.0240 0.0065 0.0001 0.9420 -0.0104 0.0003 0.8877 -0.0158 0.0051 0.0000 0.8886 -0.0187 

4 0.0002 1.2690 0.1419 0.0064 0.0001 1.1110 -0.0043 0.0002 1.0906 0.2725 0.0072 0.0001 0.9315 -0.0141 

5 0.0003 2.0700 0.5577 0.0059 -0.0001 1.3968 -0.0217 0.0004 1.6245 0.9722 0.0046 0.0000 1.0829 0.0061 

5-1 
   

-0.0004 -0.0002 0.7175*** -0.0206    -0.0040 -0.0002 -0.0295 0.0029 

pval 
   

(0.9372) (0.1807) (0.0000) (0.4984)    (0.1540) (0.1541) (0.2767) (0.9036) 
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Table 4: Results for Time-Series Regressions with      Included from April 2004 to December 2012 
First, we run the following regression for each individual stock by using the previous one-month daily data: 

               
   (         )    

          

where       represents daily change in VIX index. Then, we form quintile portfolios based on   
    (Column 2 to 8) or   

     (Column 9 to 15). Portfolio 1 consists of 

stocks with the lowest   
    or   

    , while portfolio 5 consists of stocks with the highest   
    or   

    . After portfolio formation, we conduct out-of-sample time-series 

regression for next one-month quintile portfolio daily returns by using the following regression model: 

               
   (         )    

          

The “return” column reports compounded returns of quintile portfolios during the post one-month period. 

 

Portfolios Sorted on        Portfolios Sorted on         

 
In-Sample Out-of-Sample In-Sample Out-of-Sample 

 
 ̅   ̅ 

     ̅ 
     return  ̅   ̅ 

     ̅ 
      ̅   ̅ 

     ̅ 
     return  ̅   ̅ 

     ̅ 
     

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

1 0.0007 -1.0579 -1.0128 0.0118 0.0004 0.4187 0.0141 0.0004 -0.4512 -1.4391 0.0139 0.0003 0.9438 0.0237 

2 0.0001 0.2870 -0.2027 0.0090 0.0002 0.6118 0.0127 0.0000 0.5316 -0.3232 0.0091 0.0001 0.8528 0.0157 

3 0.0000 0.8522 -0.0120 0.0093 0.0001 0.9099 0.0225 0.0000 0.7662 0.0162 0.0084 0.0001 0.7765 0.0222 

4 -0.0001 1.4486 0.2410 0.0099 0.0001 1.1471 0.0388 0.0000 1.2129 0.3632 0.0088 0.0001 0.8932 0.0288 

5 0.0001 2.9791 1.1328 0.0110 0.0000 1.3859 0.0469 0.0005 2.4495 1.5293 0.0116 0.0002 1.0070 0.0447 

5-1 
   

-0.0008 -0.0005*** 0.9672*** 0.0327*    -0.0023 -0.0002** 0.0632*** 0.0211* 

pval 
   

(0.8740) (0.0001) (0.0000) (0.0598)    (0.1976) (0.0200) (0.0008) (0.0741) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

1 0.0008 -0.5183 -0.8404 0.0070 0.0002 0.6599 -0.0255 0.0007 0.1788 -1.0013 0.0084 0.0002 1.1349 -0.0093 

2 0.0004 0.3202 -0.3024 0.0065 0.0001 0.7467 -0.0088 0.0003 0.6484 -0.3151 0.0068 0.0001 0.9506 -0.0070 

3 0.0002 0.8513 -0.0592 0.0070 0.0001 0.9222 -0.0112 0.0002 0.9160 0.0121 0.0068 0.0001 0.8893 -0.0121 

4 0.0001 1.4318 0.1879 0.0073 0.0001 1.1543 0.0044 0.0002 1.3322 0.3548 0.0056 0.0000 0.9958 0.0087 

5 0.0003 2.5355 0.7367 0.0074 -0.0001 1.5009 0.0286 0.0006 2.2661 1.0990 0.0060 0.0000 1.2012 0.0186 

5-1 
   

0.0004 -0.0003* 0.8410*** 0.0540**    -0.0023 -0.0002 0.0663* 0.0279 

pval 
   

(0.9493) (0.0695) (0.0000) (0.0475)    (0.4963) (0.2055) (0.0864) (0.2943) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

1 0.0006 -0.0871 -0.5541 0.0055 0.0001 0.6886 -0.0155 0.0005 0.3071 -0.8165 0.0085 0.0002 1.0835 -0.0075 

2 0.0003 0.5575 -0.1815 0.0067 0.0001 0.8189 -0.0032 0.0003 0.6856 -0.2520 0.0064 0.0001 0.9259 -0.0129 

3 0.0002 0.9144 -0.0282 0.0070 0.0001 0.9322 -0.0167 0.0002 0.8787 -0.0153 0.0064 0.0001 0.8790 -0.0115 

4 0.0002 1.3138 0.1446 0.0069 0.0001 1.1021 -0.0017 0.0002 1.1667 0.2300 0.0060 0.0000 0.9459 0.0011 

5 0.0003 2.2549 0.5970 0.0062 -0.0001 1.4094 0.0201 0.0004 1.9247 0.8292 0.0055 0.0000 1.1242 0.0135 

5-1 
   

0.0007 -0.0002 0.7208*** 0.0356    -0.0030 -0.0002 0.0408 0.0210 

pval 
   

(0.8833) (0.1415) (0.0000) (0.1000)    (0.3098) (0.1688) (0.1834) (0.3193) 
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Table 5: Results for Time-Series Regressions with (      ) Included from April 2004 to December 2012 
First, we run the following regression for each individual stock by using the previous one-month daily data: 

               
   (         )    

  (        ) 

Then, we form quintile portfolios based on   
    (Column 2 to 8) or   

   (Column 9 to 15). Portfolio 1 consists of stocks with the lowest   
    or   

  , while portfolio 5 

consists of stocks with the highest   
    or   

  . After portfolio formation, we conduct out-of-sample time-series regression for next one-month quintile portfolio daily 

returns by using the following regression model: 

               
   (         )    

  (        ) 

The “return” column reports compounded returns of quintile portfolios during the post one-month period. 

 

Portfolios Sorted on        Portfolios Sorted on       

 
In-Sample Out-of-Sample In-Sample Out-of-Sample 

 
 ̅   ̅ 

     ̅ 
   return  ̅   ̅ 

     ̅ 
    ̅   ̅ 

     ̅ 
   return  ̅   ̅ 

     ̅ 
   

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

1 -0.0001 -0.5208 -0.3135 0.0103 0.0006 0.2435 -0.0649 -0.0051 0.6338 -1.1509 0.0132 0.0005 0.8943 -0.0643 

2 0.0002 0.3863 -0.0989 0.0093 0.0004 0.5564 -0.0413 -0.0011 0.7611 -0.2701 0.0090 0.0003 0.8195 -0.0322 

3 0.0002 0.8463 -0.0402 0.0098 0.0003 0.8794 -0.0224 0.0002 0.7307 -0.0135 0.0080 0.0003 0.7281 -0.0137 

4 0.0002 1.2974 0.0364 0.0104 0.0002 1.1380 -0.0061 0.0014 0.9193 0.2349 0.0091 0.0003 0.8536 -0.0103 

5 0.0011 2.3038 0.2570 0.0108 0.0002 1.4750 -0.0077 0.0062 1.2681 1.0405 0.0124 0.0003 0.9969 -0.0219 

5-1 
   

0.0005 -0.0004** 1.2315*** 0.0572***    -0.0009 -0.0001 0.1026*** 0.0424*** 

pval 
   

(0.9365) (0.0460) (0.0000) (0.0005)    (0.6476) (0.3415) (0.0000) (0.0015) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

1 0.0002 -0.2003 -0.2793 0.0067 0.0003 0.4837 -0.0531 -0.0032 0.9277 -0.8304 0.0093 0.0002 1.1202 -0.0246 

2 0.0003 0.4233 -0.1108 0.0059 0.0002 0.6786 -0.0169 -0.0008 0.8863 -0.2660 0.0071 0.0001 0.9514 -0.0271 

3 0.0002 0.8457 -0.0333 0.0068 0.0001 0.9097 0.0008 0.0004 0.9061 -0.0117 0.0061 0.0001 0.9013 -0.0022 

4 0.0004 1.2818 0.0474 0.0077 0.0000 1.1610 0.0115 0.0017 1.0365 0.2325 0.0051 0.0001 0.9899 0.0092 

5 0.0008 2.0705 0.1868 0.0065 -0.0001 1.5489 -0.0004 0.0044 1.3728 0.7455 0.0063 0.0000 1.1799 0.0198 

5-1 
   

-0.0002 -0.0004 1.0652*** 0.0527**    -0.0030 -0.0002 0.0597* 0.0444** 

pval 
   

(0.9692) (0.1060) (0.0000) (0.0444)    (0.2657) (0.4198) (0.0566) (0.0494) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

1 0.0002 0.2153 -0.1562 0.0052 0.0002 0.6043 -0.0243 -0.0026 0.9141 -0.6587 0.0085 0.0001 1.0660 -0.0268 

2 0.0002 0.6672 -0.0606 0.0080 0.0002 0.8017 -0.0113 -0.0006 0.8794 -0.1878 0.0069 0.0001 0.9247 -0.0192 

3 0.0002 0.9359 -0.0157 0.0060 0.0001 0.9474 -0.0006 0.0003 0.9012 0.0020 0.0064 0.0001 0.8902 -0.0023 

4 0.0004 1.2334 0.0454 0.0062 0.0001 1.1289 0.0110 0.0012 0.9990 0.1858 0.0048 0.0001 0.9658 0.0073 

5 0.0008 1.9166 0.1587 0.0068 -0.0001 1.4815 0.0017 0.0035 1.2863 0.6206 0.0060 0.0000 1.1251 0.0174 

5-1 
   

0.0016 -0.0003 0.8772*** 0.0260    -0.0026 -0.0001 0.0591** 0.0442** 

pval 
   

(0.7677) (0.2296) (0.0000) (0.2456)    (0.2916) (0.5551) (0.0389) (0.0276) 
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Table 6: Results for Time-Series Regressions with (            ) Included from April 2004 to December 2012 
First, we run the following regression for each individual stock by using the previous one-month daily data: 

               
   (         )    

     
    (    )     (   )  

Then, we form quintile portfolios based on   
    (Column 2 to 8) or   

     
 (Column 9 to 15). Portfolio 1 consists of stocks with the lowest   

    or   
     

, while portfolio 5 

consists of stocks with the highest   
    or   

     
. After portfolio formation, we conduct out-of-sample time-series regression for next one-month quintile portfolio daily 

returns by using the following regression model: 

               
   (         )    

     
    (    )     (   )  

The “return” column reports compounded returns of quintile portfolios during the post one-month period. 

 

Portfolios Sorted on        Portfolios Sorted on          

 
In-Sample Out-of-Sample In-Sample Out-of-Sample 

 
 ̅   ̅ 

     ̅ 
     

 return  ̅   ̅ 
     ̅ 

     
  ̅   ̅ 

     ̅ 
     

 return  ̅   ̅ 
     ̅ 

     
 

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

1 -0.0002 -0.5204 -0.0615 0.0102 0.0005 0.2441 -0.0137 -0.0052 0.6307 -0.2301 0.0128 0.0004 0.8956 -0.0124 

2 0.0002 0.3866 -0.0207 0.0092 0.0004 0.5567 -0.0091 -0.0011 0.7594 -0.0544 0.0089 0.0003 0.8195 -0.0069 

3 0.0001 0.8467 -0.0078 0.0098 0.0003 0.8798 -0.0044 0.0002 0.7300 -0.0029 0.0082 0.0003 0.7299 -0.0028 

4 0.0002 1.2975 0.0076 0.0105 0.0002 1.1380 0.0003 0.0014 0.9217 0.0477 0.0091 0.0003 0.8521 -0.0021 

5 0.0011 2.3033 0.0532 0.0109 0.0002 1.4746 0.0005 0.0062 1.2719 0.2105 0.0126 0.0004 0.9961 -0.0023 

5-1 
   

0.0007 -0.0004* 1.2306*** 0.0142***    -0.0002 0.0000 0.1005*** 0.0101*** 

pval 
   

(0.9130) (0.0816) (0.0000) (0.0020)    (0.9234) (0.8214) (0.0000) (0.0033) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

1 0.0001 -0.2005 -0.0532 0.0065 0.0002 0.4872 -0.0102 -0.0033 0.9238 -0.1656 0.0092 0.0002 1.1216 -0.0044 

2 0.0003 0.4245 -0.0213 0.0058 0.0002 0.6799 -0.0045 -0.0008 0.8858 -0.0535 0.0068 0.0000 0.9534 -0.0052 

3 0.0002 0.8467 -0.0050 0.0069 0.0001 0.9086 0.0002 0.0004 0.9063 -0.0024 0.0061 0.0001 0.9044 0.0006 

4 0.0004 1.2813 0.0105 0.0076 0.0000 1.1602 0.0043 0.0017 1.0397 0.0471 0.0055 0.0001 0.9863 0.0005 

5 0.0008 2.0679 0.0354 0.0067 -0.0001 1.5476 0.0001 0.0044 1.3714 0.1514 0.0061 0.0001 1.1787 0.0054 

5-1 
   

0.0002 -0.0003 1.0605*** 0.0103*    -0.0030 -0.0001 0.0571* 0.0097** 

pval 
   

(0.9705) (0.1863) (0.0000) (0.0991)    (0.2686) (0.6528) (0.0597) (0.0283) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

1 0.0002 0.2155 -0.0307 0.0052 0.0001 0.6044 -0.0058 -0.0027 0.9126 -0.1302 0.0083 0.0001 1.0670 -0.0048 

2 0.0002 0.6673 -0.0117 0.0080 0.0002 0.8027 -0.0025 -0.0006 0.8839 -0.0372 0.0065 0.0000 0.9270 -0.0035 

3 0.0002 0.9357 -0.0015 0.0059 0.0000 0.9480 0.0004 0.0003 0.8946 0.0004 0.0068 0.0001 0.8887 -0.0011 

4 0.0003 1.2329 0.0092 0.0063 0.0001 1.1274 0.0035 0.0012 1.0016 0.0371 0.0048 0.0001 0.9635 0.0012 

5 0.0008 1.9153 0.0313 0.0068 -0.0001 1.4807 0.0012 0.0035 1.2879 0.1247 0.0062 0.0001 1.1253 0.0051 

5-1 
   

0.0016 -0.0002 0.8763*** 0.0070    -0.0021 0.0000 0.0584** 0.0099** 

pval 
   

(0.7779) (0.3325) (0.0000) (0.1677)    (0.3902) (0.9258) (0.0381) (0.0123) 
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Table 7: Quintile Portfolios Formed on the Coefficient on Change in VIX Futures from April 2004 to December 2012 
First, we run the following regression model for each individual stock by using the previous one-month daily data:  

               
    

   
      

    (         )    
           

    
   

         

Where      is equal to 1 if     is larger than or equal to zero, and equal to 0 if     is smaller than zero. In left five columns, we form quintile portfolios when     is 

negative. Portfolio 1 consists of stocks with the lowest   
   , while portfolio 5 consists of stocks with the highest   

   . In right five columns, we form quintile portfolios 

when     is positive. Portfolio 1 consists of stocks with the lowest (  
      

    
), while portfolio 5 consists of stocks with the highest (  

      
    

). Then, we 

calculate Jensen’s alphas with respect to the CAPM and Fama-French three-factor model for each quintile portfolio and the “5-1” arbitrage portfolio. 

 

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

       CAPM   p-value FF   p-value        CAPM   p-value FF   p-value 

1 0.0322%** (0.0350) 0.0385%** (0.0117) 1 0.0256% (0.1171) 0.0338%** (0.0313) 

2 0.0163%* (0.0664) 0.0179%** (0.0255) 2 0.0186%** (0.0365) 0.0226%*** (0.0038) 

3 0.0136%* (0.0508) 0.0159%** (0.0113) 3 0.0127%* (0.0740) 0.0156%** (0.0138) 

4 0.0102% (0.2514) 0.0169%** (0.0212) 4 0.0142%* (0.0955) 0.0208%*** (0.0032) 

5 0.0219% (0.1862) 0.0375%** (0.0102) 5 0.0231% (0.1367) 0.0340%** (0.0169) 

5-1 -0.0103% (0.2067) -0.0010% (0.9027) 5-1 -0.0025% (0.7653) 0.0002% (0.9839) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

       CAPM   p-value FF   p-value        CAPM   p-value FF   p-value 

1 0.0055% (0.5456) 0.0068% (0.4690) 1 0.0189%* (0.0685) 0.0188%* (0.0885) 

2 0.0049% (0.1947) 0.0004% (0.9131) 2 0.0133%*** (0.0042) 0.0122%*** (0.0055) 

3 0.0034% (0.4184) 0.0047% (0.1738) 3 0.0072%** (0.0282) 0.0056%* (0.0703) 

4 0.0104%** (0.0315) 0.0144%*** (0.0037) 4 0.0023% (0.5635) 0.0046% (0.2531) 

5 0.0041% (0.6211) 0.0246%** (0.0101) 5 -0.0084% (0.3026) 0.0074% (0.4433) 

5-1 -0.0014% (0.9192) 0.0178% (0.2086) 5-1 -0.0273%** (0.0435) -0.0114% (0.4090) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

       CAPM   p-value FF   p-value        CAPM   p-value FF   p-value 

1 0.0070% (0.3690) 0.0056% (0.4461) 1 0.0197%** (0.0153) 0.0185%** (0.0236) 

2 0.0044% (0.2671) -0.0007% (0.8684) 2 0.0082%* (0.0876) 0.0087%* (0.0822) 

3 0.0037% (0.3258) 0.0032% (0.3362) 3 0.0077%** (0.0497) 0.0057% (0.1299) 

4 0.0088% (0.1034) 0.0102%** (0.0224) 4 0.0017% (0.6609) 0.0044% (0.2544) 

5 0.0089% (0.1778) 0.0256%*** (0.0034) 5 -0.0050% (0.4483) 0.0066% (0.3807) 

5-1 0.0020% (0.8665) 0.0199% (0.1140) 5-1 -0.0246%** (0.0318) -0.0119% (0.3115) 
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Table 8: Quintile Portfolios Formed on the Coefficient on Change in VIX Index from April 2004 to December 2012 
First, we run the following regression model for each individual stock by using the previous one-month daily data:  

               
     

   
       

    (         )    
             

     

   
           

Where       is equal to 1 if      is larger than or equal to zero, and equal to 0 if      is smaller than zero. In left five columns, we form quintile portfolios when     is 

negative. Portfolio 1 consists of stocks with the lowest   
    , while portfolio 5 consists of stocks with the highest   

    . In right five columns, we form quintile portfolios 

when      is positive. Portfolio 1 consists of stocks with the lowest (  
       

     

), while portfolio 5 consists of stocks with the highest (  
       

     

). Then, we 

calculate Jensen’s alphas with respect to the CAPM and Fama-French three-factor model for each quintile portfolio and the “5-1” arbitrage portfolio. 

 

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0243% (0.1045) 0.0321%** (0.0226) 1 0.0309%* (0.0607) 0.0429%*** (0.0053) 

2 0.0156%* (0.0676) 0.0196%*** (0.0083) 2 0.0189%** (0.0405) 0.0243%*** (0.0038) 

3 0.0157%** (0.0338) 0.0177%** (0.0104) 3 0.0139%* (0.0580) 0.0160%** (0.0181) 

4 0.0158%* (0.0646) 0.0212%*** (0.0042) 4 0.0122% (0.1371) 0.0167%** (0.0144) 

5 0.0228% (0.1641) 0.0362%** (0.0162) 5 0.0183% (0.2275) 0.0268%* (0.0548) 

5-1 -0.0015% (0.8242) 0.0041% (0.5617) 5-1 -0.0126% (0.1170) -0.0162%* (0.0523) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 -0.0026% (0.7676) 0.0050% (0.5830) 1 0.0116% (0.2992) 0.0295%** (0.0107) 

2 -0.0006% (0.8998) 0.0003% (0.9336) 2 0.0091%* (0.0644) 0.0122%*** (0.0096) 

3 0.0130%*** (0.0023) 0.0110%*** (0.0063) 3 0.0068%* (0.0711) 0.0064%* (0.0882) 

4 0.0119%*** (0.0079) 0.0125%*** (0.0046) 4 0.0074% (0.1018) 0.0061% (0.1146) 

5 0.0091% (0.3188) 0.0227%** (0.0274) 5 -0.0016% (0.8662) -0.0070% (0.4373) 

5-1 0.0117% (0.3624) 0.0177% (0.1591) 5-1 -0.0132% (0.4132) -0.0365%** (0.0125) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 -0.0018% (0.8003) 0.0044% (0.5347) 1 0.0129% (0.1567) 0.0275%*** (0.0034) 

2 -0.0003% (0.9515) -0.0006% (0.8821) 2 0.0058% (0.2603) 0.0054% (0.2290) 

3 0.0073% (0.1043) 0.0074% (0.1083) 3 0.0096%** (0.0152) 0.0095%** (0.0167) 

4 0.0171%*** (0.0006) 0.0172%*** (0.0006) 4 0.0036% (0.3361) 0.0038% (0.2640) 

5 0.0096% (0.1393) 0.0155%** (0.0181) 5 0.0009% (0.9061) -0.0017% (0.8119) 

5-1 0.0114% (0.2956) 0.0111% (0.3011) 5-1 -0.0120% (0.3804) -0.0291%** (0.0161) 
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Table 9: Quintile Portfolios Formed on the Coefficient on Differences between VIX Index and VIX Index Future from April 2004 to 

December 2012 
First, we run the following regression model for each individual stock by using the previous one-month daily data:  
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   (        )    

   

   
   (        ) 

Where     is equal to 1 if (      ) is larger than or equal to zero, and equal to 0 if (      ) is smaller than zero. In left five columns, we form quintile portfolios 

when (      ) is negative. Portfolio 1 consists of stocks with the lowest   
  , while portfolio 5 consists of stocks with the highest   

  . In right five columns, we form 

quintile portfolios when (      ) is positive. Portfolio 1 consists of stocks with the lowest (  
     

   

), while portfolio 5 consists of stocks with the highest (  
   

  
   

). Then, we calculate Jensen’s alphas with respect to the CAPM and Fama-French three-factor model for each quintile portfolio and the “5-1” arbitrage portfolio. 

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

      CAPM   p-value FF   p-value       CAPM   p-value FF   p-value 

1 0.0218% (0.1779) 0.0319%** (0.0305) 1 0.0275% (0.1045) 0.0405%*** (0.0071) 

2 0.0136% (0.1296) 0.0193%** (0.0132) 2 0.0152%* (0.0714) 0.0184%** (0.0165) 

3 0.0138%** (0.0434) 0.0155%** (0.0182) 3 0.0102% (0.1351) 0.0123%* (0.0719) 

4 0.0163%* (0.0507) 0.0210%*** (0.0029) 4 0.0156%* (0.0500) 0.0172%** (0.0211) 

5 0.0287%* (0.0707) 0.0389%*** (0.0090) 5 0.0279%** (0.0469) 0.0328%** (0.0169) 

5-1 0.0069% (0.3566) 0.0070% (0.3001) 5-1 0.0004% (0.9591) -0.0077% (0.3291) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

      CAPM   p-value FF   p-value       CAPM   p-value FF   p-value 

1 0.0110% (0.1795) 0.0142% (0.1155) 1 0.0087% (0.4483) 0.0256%** (0.0256) 

2 0.0100%** (0.0394) 0.0080%* (0.0992) 2 0.0093%* (0.0502) 0.0102%** (0.0209) 

3 0.0039% (0.2641) 0.0033% (0.3058) 3 0.0046% (0.1856) 0.0039% (0.2526) 

4 0.0073%* (0.0536) 0.0113%*** (0.0033) 4 -0.0003% (0.9368) 0.0003% (0.9443) 

5 0.0084% (0.3598) 0.0189%** (0.0471) 5 0.0008% (0.9239) 0.0021% (0.7940) 

5-1 -0.0026% (0.8270) 0.0047% (0.6943) 5-1 -0.0079% (0.6315) -0.0235%* (0.0846) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

      CAPM   p-value FF   p-value       CAPM   p-value FF   p-value 

1 0.0103% (0.1236) 0.0117% (0.1245) 1 0.0081% (0.3959) 0.0202%** (0.0401) 

2 0.0095%** (0.0275) 0.0057% (0.1655) 2 0.0119%** (0.0217) 0.0123%** (0.0111) 

3 0.0009% (0.8069) 0.0023% (0.5112) 3 0.0056% (0.1557) 0.0056% (0.1312) 

4 0.0055% (0.1351) 0.0091%** (0.0183) 4 0.0041% (0.4234) 0.0050% (0.2633) 

5 0.0067% (0.3620) 0.0157%** (0.0422) 5 0.0028% (0.7013) 0.0013% (0.8546) 

5-1 -0.0036% (0.7353) 0.0039% (0.7186) 5-1 -0.0053% (0.7079) -0.0190% (0.1444) 
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Table 10: Quintile Portfolios Formed on the Coefficient on Differences between log VIX Index and log VIX Index Future from April 

2004 to December 2012 
First, we run the following regression model for each individual stock by using the previous one-month daily data:  
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Where        is equal to 1 if (            ) is larger than or equal to zero, and equal to 0 if (            ) is smaller than zero. In left five columns, we form 

quintile portfolios when (            ) is negative. Portfolio 1 consists of stocks with the lowest   
     

, while portfolio 5 consists of stocks with the highest   
     

. In 

right five columns, we form quintile portfolios when (            ) is positive. Portfolio 1 consists of stocks with the lowest (  
     

   
      

), while portfolio 5 

consists of stocks with the highest (  
     

   
      

). Then, we calculate Jensen’s alphas with respect to the CAPM and Fama-French three-factor model for each quintile 

portfolio and the “5-1” arbitrage portfolio. 

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

         CAPM   p-value FF   p-value          CAPM   p-value FF   p-value 

1 0.0220% (0.1815) 0.0327%** (0.0269) 1 0.0293%* (0.0868) 0.0420%*** (0.0063) 

2 0.0120% (0.1713) 0.0175%** (0.0230) 2 0.0161%* (0.0641) 0.0185%** (0.0174) 

3 0.0138%** (0.0477) 0.0162%** (0.0123) 3 0.0105% (0.1564) 0.0130%* (0.0563) 

4 0.0173%** (0.0402) 0.0223%*** (0.0019) 4 0.0170%** (0.0398) 0.0188%** (0.0139) 

5 0.0291%* (0.0627) 0.0381%*** (0.0099) 5 0.0268%* (0.0542) 0.0318%** (0.0170) 

5-1 0.0070% (0.3652) 0.0053% (0.4044) 5-1 -0.0025% (0.7613) -0.0102% (0.1833) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

         CAPM   p-value FF   p-value          CAPM   p-value FF   p-value 

1 0.0097% (0.2256) 0.0151% (0.1198) 1 0.0092% (0.4026) 0.0272%** (0.0189) 

2 0.0063% (0.1379) 0.0061% (0.1602) 2 0.0068% (0.1900) 0.0082%* (0.0738) 

3 0.0063%* (0.0674) 0.0042% (0.2064) 3 0.0053% (0.1505) 0.0050% (0.1746) 

4 0.0090%** (0.0174) 0.0125%*** (0.0025) 4 0.0016% (0.6845) 0.0018% (0.6245) 

5 0.0090% (0.3167) 0.0193%** (0.0389) 5 0.0033% (0.6925) 0.0035% (0.6596) 

5-1 -0.0007% (0.9473) 0.0042% (0.7240) 5-1 -0.0059% (0.7102) -0.0237%* (0.0811) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

         CAPM   p-value FF   p-value          CAPM   p-value FF   p-value 

1 0.0083% (0.1844) 0.0119% (0.1201) 1 0.0074% (0.4296) 0.0204%** (0.0366) 

2 0.0077%* (0.0771) 0.0047% (0.2626) 2 0.0118% (0.0196)** 0.0132%*** (0.0044) 

3 0.0039% (0.2593) 0.0032% (0.3909) 3 0.0055% (0.1740) 0.0050% (0.2050) 

4 0.0032% (0.3862) 0.0067%* (0.0813) 4 0.0042% (0.3520) 0.0040% (0.3341) 

5 0.0096% (0.1855) 0.0180%** (0.0220) 5 0.0035% (0.6256) 0.0018% (0.7872) 

5-1 0.0014% (0.8932) 0.0061% (0.5676) 5-1 -0.0039% (0.7797) -0.0187% (0.1401) 
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Table 11: Quintile Portfolios Formed on the Coefficient on Change in VIX Index from Jan 1996 to Dec 2012 
First, we run the following regression model for each individual stock by using the previous one-month daily data:  
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Where       is equal to 1 if      is larger than or equal to zero, and equal to 0 if      is smaller than zero. In left five columns, we form quintile portfolios when     is 

negative. Portfolio 1 consists of stocks with the lowest   
    , while portfolio 5 consists of stocks with the highest   

    . In right five columns, we form quintile portfolios 

when      is positive. Portfolio 1 consists of stocks with the lowest (  
       

     

), while portfolio 5 consists of stocks with the highest (  
       

     

). Then, we 

calculate Jensen’s alphas with respect to the CAPM and Fama-French three-factor model for each quintile portfolio and the “5-1” arbitrage portfolio. 

 

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0728%*** (0.0000) 0.0714%*** (0.0000) 1 0.0798%*** (0.0000) 0.0797%*** (0.0000) 

2 0.0353%*** (0.0001) 0.0330%*** (0.0000) 2 0.0387%*** (0.0000) 0.0346%*** (0.0000) 

3 0.0309%*** (0.0000) 0.0265%*** (0.0000) 3 0.0296%*** (0.0000) 0.0245%*** (0.0000) 

4 0.0341%*** (0.0001) 0.0296%*** (0.0000) 4 0.0302%*** (0.0002) 0.0270%*** (0.0000) 

5 0.0680%*** (0.0001) 0.0701%*** (0.0000) 5 0.0626%*** (0.0001) 0.0647%*** (0.0000) 

5-1 -0.0048% (0.5185) -0.0013% (0.8424) 5-1 -0.0172%** (0.0153) -0.0150%** (0.0344) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0026% (0.7493) 0.0118%* (0.0945) 1 0.0077% (0.4058) 0.0234%*** (0.0081) 

2 0.0081%** (0.0278) 0.0136%*** (0.0009) 2 0.0082%* (0.0635) 0.0119%*** (0.0021) 

3 0.0125%*** (0.0012) 0.0089%** (0.0114) 3 0.0099%** (0.0118) 0.0122%*** (0.0007) 

4 0.0074%** (0.0386) 0.0025% (0.5540) 4 0.0082%* (0.0520) 0.0053% (0.2133) 

5 0.0007% (0.9288) 0.0167%* (0.0549) 5 -0.0037% (0.6363) -0.0019% (0.8016) 

5-1 -0.0019% (0.8654) 0.0049% (0.6511) 5-1 -0.0114% (0.3469) -0.0253%** (0.0251) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0015% (0.8007) 0.0116%** (0.0419) 1 0.0093% (0.1283) 0.0232%*** (0.0004) 

2 0.0126%*** (0.0016) 0.0156%*** (0.0004) 2 0.0078%* (0.0917) 0.0100%** (0.0121) 

3 0.0098%** (0.0173) 0.0076%** (0.0401) 3 0.0080%** (0.0482) 0.0097%*** (0.0092) 

4 0.0095%** (0.0140) 0.0053% (0.1995) 4 0.0110%*** (0.0080) 0.0098%** (0.0294) 

5 0.0023% (0.6807) 0.0116%* (0.0572) 5 -0.0004% (0.9465) -0.0009% (0.8759) 

5-1 0.0008% (0.9268) 0.0000% (0.9965) 5-1 -0.0097% (0.3275) -0.0241%** (0.0115) 
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Table 12: Quintile Portfolios Formed on the Coefficient on Change in VIX Index from Jan 1996 to Dec 2012 
First, we run the following regression model for each individual stock by using the previous two-month daily data:  
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Where       is equal to 1 if      is larger than or equal to zero, and equal to 0 if      is smaller than zero. In left five columns, we form quintile portfolios when     is 

negative. Portfolio 1 consists of stocks with the lowest   
    , while portfolio 5 consists of stocks with the highest   

    . In right five columns, we form quintile portfolios 

when      is positive. Portfolio 1 consists of stocks with the lowest (  
       

     

), while portfolio 5 consists of stocks with the highest (  
       

     

). Then, we 

calculate Jensen’s alphas with respect to the CAPM and Fama-French three-factor model for each quintile portfolio and the “5-1” arbitrage portfolio. 

 

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0729%*** (0.0000) 0.0715%*** (0.0000) 1 0.0772%*** (0.0000) 0.0763%*** (0.0000) 

2 0.0359%*** (0.0001) 0.0316%*** (0.0000) 2 0.0404%*** (0.0000) 0.0352%*** (0.0000) 

3 0.0306%*** (0.0000) 0.0268%*** (0.0000) 3 0.0300%*** (0.0000) 0.0252%*** (0.0000) 

4 0.0341%*** (0.0001) 0.0304%*** (0.0000) 4 0.0301%*** (0.0002) 0.0274%*** (0.0000) 

5 0.0690%*** (0.0001) 0.0715%*** (0.0000) 5 0.0646%*** (0.0001) 0.0677%*** (0.0000) 

5-1 -0.0039% (0.5668) 0.0000% (0.9959) 5-1 -0.0126%* (0.0770) -0.0086% (0.2110) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0080% (0.3187) 0.0121% (0.1022) 1 0.0117% (0.2145) 0.0191%** (0.0240) 

2 0.0078%** (0.0351) 0.0122%*** (0.0007) 2 0.0105%** (0.0136) 0.0158%*** (0.0000) 

3 0.0077%** (0.0283) 0.0048% (0.1671) 3 0.0067%* (0.0725) 0.0078%** (0.0461) 

4 0.0080%* (0.0502) 0.0101%** (0.0255) 4 0.0029% (0.4160) 0.0016% (0.6944) 

5 0.0085% (0.3319) 0.0212%** (0.0218) 5 -0.0058% (0.5305) 0.0053% (0.5161) 

5-1 0.0005% (0.9630) 0.0091% (0.3966) 5-1 -0.0175% (0.2041) -0.0138% (0.2265) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0084% (0.1869) 0.0129%** (0.0294) 1 0.0124%* (0.0619) 0.0225%*** (0.0002) 

2 0.0065% (0.1039) 0.0108%** (0.0197) 2 0.0107%** (0.0173) 0.0114%** (0.0114) 

3 0.0096%** (0.0132) 0.0076%** (0.0319) 3 0.0085%** (0.0319) 0.0091%** (0.0206) 

4 0.0099%** (0.0126) 0.0076%** (0.0379) 4 0.0077%** (0.0470) 0.0061% (0.1336) 

5 0.0017% (0.7792) 0.0129%** (0.0489) 5 -0.0033% (0.6461) 0.0029% (0.6595) 

5-1 -0.0067% (0.4870) 0.0000% (0.9985) 5-1 -0.0157% (0.1602) -0.0196%** (0.0299) 
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Table 13: Quintile Portfolios Formed on the Coefficient on Change in VIX Index from Jan 1996 to Dec 2012 
First, we run the following regression model for each individual stock by using the previous three-month daily data:  
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Where       is equal to 1 if      is larger than or equal to zero, and equal to 0 if      is smaller than zero. In left five columns, we form quintile portfolios when     is 

negative. Portfolio 1 consists of stocks with the lowest   
    , while portfolio 5 consists of stocks with the highest   

    . In right five columns, we form quintile portfolios 

when      is positive. Portfolio 1 consists of stocks with the lowest (  
       

     

), while portfolio 5 consists of stocks with the highest (  
       

     

). Then, we 

calculate Jensen’s alphas with respect to the CAPM and Fama-French three-factor model for each quintile portfolio and the “5-1” arbitrage portfolio. 

 

Panel A: Equal-Weighted across Portfolios and Equal-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0733%*** (0.0000) 0.0718%*** (0.0000) 1 0.0778%*** (0.0000) 0.0768%*** (0.0000) 

2 0.0341%*** (0.0001) 0.0311%*** (0.0000) 2 0.0388%*** (0.0000) 0.0350%*** (0.0000) 

3 0.0317%*** (0.0000) 0.0270%*** (0.0000) 3 0.0300%*** (0.0000) 0.0258%*** (0.0000) 

4 0.0343%*** (0.0001) 0.0305%*** (0.0000) 4 0.0311%*** (0.0002) 0.0268%*** (0.0000) 

5 0.0696%*** (0.0001) 0.0718%*** (0.0000) 5 0.0652%*** (0.0000) 0.0679%*** (0.0000) 

5-1 -0.0037% (0.6224) 0.0000% (0.9957) 5-1 -0.0125%* (0.0678) -0.0089% (0.1862) 

Panel B: Equal-Weighted across Portfolios and Value-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0017% (0.8333) 0.0135%** (0.0492) 1 0.0076% (0.4317) 0.0161%* (0.0548) 

2 0.0050% (0.1867) 0.0085%** (0.0204) 2 0.0019% (0.6796) 0.0104%** (0.0136) 

3 0.0092%** (0.0194) 0.0071%* (0.0622) 3 0.0108%*** (0.0074) 0.0105%*** (0.0055) 

4 0.0104%*** (0.0071) 0.0097%** (0.0485) 4 0.0076%** (0.0492) 0.0048% (0.2246) 

5 0.0067% (0.4428) 0.0183%** (0.0456) 5 -0.0033% (0.6966) 0.0071% (0.4117) 

5-1 0.0050% (0.6934) 0.0048% (0.6800) 5-1 -0.0109% (0.4105) -0.0090% (0.4318) 

Panel C: Value-Weighted across Portfolios and Value-Weighted within Portfolios 

        CAPM   p-value FF   p-value         CAPM   p-value FF   p-value 

1 0.0025% (0.7044) 0.0110%* (0.0725) 1 0.0080% (0.2718) 0.0201%*** (0.0020) 

2 0.0077%** (0.0322) 0.0112%*** (0.0033) 2 0.0057% (0.1965) 0.0083%* (0.0576) 

3 0.0087%** (0.0261) 0.0077%** (0.0362) 3 0.0126%*** (0.0043) 0.0124%*** (0.0021) 

4 0.0112%** (0.0120) 0.0097%** (0.0257) 4 0.0082%** (0.0302) 0.0030% (0.4738) 

5 0.0051% (0.4068) 0.0121%* (0.0609) 5 0.0006% (0.9233) 0.0078% (0.2467) 

5-1 0.0026% (0.7977) 0.0011% (0.9141) 5-1 -0.0074% (0.5239) -0.0123% (0.2213) 
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Table 14: Results for Cross-Sectional Regressions 
At the end of each month, we first form five quintiles based on the beta coefficient on market excess return (  

   ) in the univariate regression using one-month daily data: 

               
    (         )  

Then, within each market quintile, I form five quintile portfolios based on the beta coefficient on volatility risk factor,   , from the following model. 

               
    (         )    

       

So there are     portfolios in total. After forming 25 portfolios, we run the following regression by using daily data of each portfolio in the same one-month to get the 

factor loadings: 

               
    (         )    

       

For each portfolio, we can get the intercept,   , beta coefficient on market excess returns,     , and beta coefficient on volatility risk factor,    . That is, we have 25   
    

and 25   
  . Then, we use these factor loadings in the second step of Fama-MacBeth cross-sectional regression. On each trading day, we run the following regression: 

              
         

   

where    is the daily return on each portfolio. I use the same   
    and   

   in the following one-month to estimate      and    . Since there are about 20 trading days in 

each month, we can get about 20      and 20     in each month after the cross-sectional regression. Then, we can use t-test to check whether the risk premium on each 

volatility risk factor is significantly different from zero. 

 

 
Equal-Weighted Value-Weighted 

 
I II III IV I II III IV 

Intercept 0.0448%*** 0.0453%*** 0.0444%*** 0.0450%*** 0.0280%* 0.0285%* 0.0283%* 0.0283%* 

 
(0.0018) (0.0015) (0.0018) (0.0015) (0.0787) (0.0742) (0.0782) (0.0797) 

     0.0049% 0.0052% 0.0056% 0.0054% 0.0093% 0.0088% 0.0088% 0.0093% 

 
(0.7882) (0.7750) (0.7586) (0.7669) (0.6470) (0.6667) (0.6668) (0.6492) 

     -0.0052% 
   

-0.0109% 
   

 
(0.7169) 

   
(0.5226) 

   
      

 
-0.0078% 

   
-0.0173% 

  

  
(0.7249) 

   
(0.5037) 

  
        

  
0.0022% 

   
-0.0021% 

 

   
(0.8210) 

   
(0.9015) 

 
    (   )    (  )  

  
0.0069%  

  
0.0001% 

    
(0.8461) 

   
(0.9982) 
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Table 15: Results for Cross-Sectional Regressions 
For Table 15, the 1

st
 step of Fama-MacBeth cross-sectional regression is the same as the procedure illustrated in Table 14. Then, in the 2

nd
 step, to separate different situations 

(whether volatility risk factors are positive or negative), we define four dummy variables (  
   ,   

   ,   
  , and   

  ).  

          
     

     
      

    
    

   

I use the same   
    and   

   in the following one-month to estimate   
    and   

  . Since there are about 20 trading days in each month, we can get about 20   
    and 20 

  
   in each month after the cross-sectional regression. Then, we can use t-test to check whether the risk premium on each volatility risk factor is significantly different from 

zero. 

 
Equal-Weighted Value-Weighted 

 
I II III IV I II III IV 

Intercept 0.0379%*** 0.0384%*** 0.0375%*** 0.0381%*** 0.0211% 0.0216% 0.0214% 0.0214% 

 
(0.0081) (0.0072) (0.0083) (0.0072) (0.1848) (0.1759) (0.1830) (0.1848) 

  
    0.4353%*** 0.4362%*** 0.4366%*** 0.4366%*** 0.4561%*** 0.4545%*** 0.4583%*** 0.4574%*** 

 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

  
    -0.5173%*** -0.5176%*** -0.5173%*** -0.5176%*** -0.5327%*** -0.5318%*** -0.5364%*** -0.5343%*** 

 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

  
    0.3025%*** 

   
0.3206%*** 

   

 
(0.0000) 

   
(0.0000) 

   
  

    -0.2538%*** 
   

-0.2787%*** 
   

 
(0.0000) 

   
(0.0000) 

   
  

     
 

0.4906%*** 
   

0.5118%*** 
  

  
(0.0000) 

   
(0.0000) 

  
  

     
 

-0.4295%*** 
   

-0.4650%*** 
  

  
(0.0000) 

   
(0.0000) 

  
  

       
  

0.0721%*** 
   

0.0772% 
 

   
(0.0075) 

   
(0.1098) 

 
  

       
  

-0.0270%*** 
   

-0.0352%*** 
 

   
(0.0005) 

   
(0.0047) 

 
  

   (   )    (  )
  

  
0.3261%***  

  
0.3419%** 

    
(0.0003) 

   
(0.0302) 

  
   (   )    (  )  

  
-0.1267%***  

  
-0.1430%** 

    
(0.0002) 

   
(0.0125) 

 


